满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC...

manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,manfen5.com 满分网
(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD;
(Ⅲ)求直线BC与平面PBD所成的角的正切值.
(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件; (2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件; (3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可. 【解析】 (1)证明:设AC∩BD=H,连接EH,在△ADC中, 因为AD=CD,且DB平分∠ADC, 所以H为AC的中点,又有题设, E为PC的中点,故EH∥PA, 又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE (2)证明:因为PD⊥平面ABCD, AC⊂平面ABCD,所以PD⊥AC 由(1)知,BD⊥AC,PD∩BD=D, 故AC⊥平面PBD (3)由AC⊥平面PBD可知, BH为BC在平面PBD内的射影, 所以∠CBH为直线与平面PBD所成的角. 由AD⊥CD,AD=CD=1,DB=2,可得DH=CH= 在Rt△BHC中,tan∠CBH=, 所以直线BC与平面PBD所成的角的正切值为.
复制答案
考点分析:
相关试题推荐
在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:AB∥l.

manfen5.com 满分网 查看答案
设P是60°的二面角α-l-β内一点,PA⊥α,PB⊥β,A、B分别为垂足,PA=2,PB=4,则AB的长是     查看答案
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足    时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
manfen5.com 满分网 查看答案
m、n是空间两条不同直线,α、β是空间两条不同平面,下面有四个命题:
①m⊥α,n∥β,α∥β⇒m⊥n;
②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;
④m⊥α,m∥n,α∥β⇒n⊥β;
其中真命题的编号是    (写出所有真命题的编号). 查看答案
在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( )
A.30°
B.45°
C.60°
D.90°
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.