满分5 > 高中数学试题 >

一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a...

一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求三棱锥F-MCE的体积;
(Ⅲ)当FG=GD时,证明AG∥平面FMC.

manfen5.com 满分网
(Ⅰ)由三视图易得该几何体是一个底面为等腰直角三角形的直三棱柱,且侧面积ABCD是正方形,根据已知,我们易得AC⊥面ABCD ,进而得到GN⊥AC. (Ⅱ)利用转化思想,我们可得VE-FMC=VADF-BCE-VF-AMCD-VE-MBC,把相应的棱长代入体积公式,即可得到结论. (Ⅲ)连接DE交FC于Q,连接QG,我们易得AM∥GQ,根据线面平行的判定定理,我们易得结论. 【解析】 (Ⅰ)由三视图可知,多面体是直三棱柱, 两底面是直角边长为a的等腰直角三角形, 侧面ABCD,CDFE是边长为a的正方形.(3分) 连接DN,因为FD⊥CD,FD⊥AD, 所以,FD⊥面ABCD ∴FD⊥AC 又∵AC⊥DN, 所以,AC⊥面GND, GN⊂面GND 所以GN⊥AC(6分) (Ⅱ)VE-FMC=VADF-BCE-VF-AMCD-VE-MBC.(12分) = = =.(14分) 另【解析】 (Ⅲ)连接DE交FC于Q,连接QG 因为G,Q,M分别是FD,FC,AB的中点,所以GQ∥,AM∥, 所以,AM∥GQ,AMGQ是平行四边形(9分) AG∥QM,AG⊄面FMC,MQ⊂面FMC 所以,AG∥平面FMC.(10分)
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若数列manfen5.com 满分网前n项和为Tn,问满足manfen5.com 满分网的最小正整数n是多少?.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足manfen5.com 满分网的概率;
(Ⅱ)若x,y∈[1,6],求满足manfen5.com 满分网的概率.
查看答案
已知函数f(x)=2cosx•sin(x+manfen5.com 满分网)-manfen5.com 满分网
(1)求函数f(x)的最小正周期T;
(2)在给定的坐标系中,用“五点法”作出函数f(x)在一个周期上的函数.

manfen5.com 满分网 查看答案
manfen5.com 满分网=(1,-2),manfen5.com 满分网=(a,-1),manfen5.com 满分网=(-b,0),a>0,b>0,O为坐标原点,若A、B、C三点共线,则manfen5.com 满分网+manfen5.com 满分网的最小值是    查看答案
已知两个不同的平面α、β和两条不重合的直线,m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α
②若m⊥α,m⊥β,则α∥β;
③若m⊥α,m∥n,n⊂β,则α⊥β;
④若m∥α,α∩β=n,则m∥n
其中不正确的命题的个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.