满分5 > 高中数学试题 >

如图,已知椭圆C:+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:...

如图,已知椭圆C:manfen5.com 满分网+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)不过点A的动直线l与椭圆C相交于PQ两点,且manfen5.com 满分网manfen5.com 满分网=0.求证:直线l过定点,并求出该定点的坐标.

manfen5.com 满分网
(Ⅰ)确定圆M的圆心与半径,利用直线AF与圆M相切,根据点到直线的距离公式,求得几何量,从而可求椭圆C的方程; (Ⅱ)设直线AP的方程为y=kx+1,则直线AQ的方程为y=-,分别与椭圆C的方程联立,求得P、Q的坐标,可得直线l的方程,即可得到结论. (Ⅰ)【解析】 将圆M的一般方程x2+y2-6x-2y+7=0化为标准方程(x-3)2+(y-1)2=3, 圆M的圆心为M(3,1),半径r= 由A(0,1),F(c,0)(c=),得直线AF:+y=1,即x+cy-c=0, 由直线AF与圆M相切,得=,∴c2=2 ∴a2=c2+1=3,∴椭圆C的方程为C:+y2=1; (Ⅱ)证明:∵•=0,∴AP⊥AQ,从而直线AP与坐标轴不垂直, 由A(0,1)可设直线AP的方程为y=kx+1,则直线AQ的方程为y=- 将y=kx+1代入椭圆C的方程,整理得:(1+3k2)x2+6kx=0, 解得x=0或x=-,因此P的坐标为(-,-+1), 即P(-,) 将上式中的k换成-,得Q(,) ∴直线l的斜率为= 直线l的方程为y=(x-)+ 化简得直线l的方程为y=x-,因此直线l过定点N(0,-).
复制答案
考点分析:
相关试题推荐
设y=f(x)为三次函数,且图象关于原点对称,当x=manfen5.com 满分网时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
查看答案
一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求三棱锥F-MCE的体积;
(Ⅲ)当FG=GD时,证明AG∥平面FMC.

manfen5.com 满分网 查看答案
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若数列manfen5.com 满分网前n项和为Tn,问满足manfen5.com 满分网的最小正整数n是多少?.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足manfen5.com 满分网的概率;
(Ⅱ)若x,y∈[1,6],求满足manfen5.com 满分网的概率.
查看答案
已知函数f(x)=2cosx•sin(x+manfen5.com 满分网)-manfen5.com 满分网
(1)求函数f(x)的最小正周期T;
(2)在给定的坐标系中,用“五点法”作出函数f(x)在一个周期上的函数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.