满分5 > 高中数学试题 >

公民在就业的第一年就交纳养老储备金a1,以后每年交纳的数目均比上一年增加d(d>...

公民在就业的第一年就交纳养老储备金a1,以后每年交纳的数目均比上一年增加d(d>0),历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…以Tn表示到第n年末所累计的储备金总额.
求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
这是一个综合考查数列性质的应用题,要求证Tn可以表示为An+Bn的形式,其中{An}是一个等比数列,{Bn}是一个等差数列.我们要根据已知中Tn所表示的实际意义,根据Tn表示到第n年末所累计的储备金总额,及储备金总额的计算方法计算Tn,然后对其进行分解,并对分解结合等差数列等比数列的定义进行分析,不难临到结果. 【解析】 T1=a1,对n≥2反复使用上述关系式,得 Tn=Tn-1(1+r)+an=Tn-2(1+r)2+an-1(1+r)+an═a1(1+r)n-1+a2(1+r)n-2++an-1(1+r)+an,① 在①式两端同乘1+r,得(1+r)Tn=a1(1+r)n+a2(1+r)n-1++an-1(1+r)2+an(1+r)② ②-①,得rTn=a1(1+r)n+d[(1+r)n-1+(1+r)n-2++(1+r)]-an=. 即. 如果记,, 则Tn=An+Bn. 其中{An}是以为首项,以1+r(r>0)为公比的等比数列; {Bn}是以为首项,为公差的等差数列.
复制答案
考点分析:
相关试题推荐
(1)设a1,a2,…,an是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.
(i)当n=4时,求manfen5.com 满分网的数值;
(ii)求n的所有可能值.
(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,bn,其中任意三项(按原来的顺序)都不能组成等比数列.
查看答案
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.
(1)求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论;
(2)证明:manfen5.com 满分网
查看答案
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足manfen5.com 满分网
(Ⅰ)证明数列manfen5.com 满分网成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当manfen5.com 满分网时,求上表中第k(k≥3)行所有项的和.

manfen5.com 满分网 查看答案
某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,manfen5.com 满分网T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为    ;第2009棵树种植点的坐标应为    查看答案
矩形ABCD中,AB=manfen5.com 满分网,BC=2,Q为AD的中点,将△ABQ、△CDQ沿BQ、CQ折起,使得AQ、DQ重合,记A、D重合的点为P.
(1)求二面角B-PQ-C的大小;
(2)证明PQ⊥BC;
(3)求直线PQ与平面BCQ所成的角的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.