满分5 > 高中数学试题 >

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-b...

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=an2•bn,证明:当且仅当n≥3时,cn+1<cn
(1)由题意知a1=S1=4,an=Sn-Sn-1化简可得,an=4n,n∈N*,再由bn=Tn-Tn-1=(2-bn)-(2-bn-1),可得2bn=bn-1知数列bn是等比数列,其首项为1,公比为的等比数列,由此可知数列{an}与{bn}的通项公式. (2)由题意知,=.由得,解得n≥3.由此能够导出当且仅当n≥3时cn+1<cn. 【解析】 (1)由于a1=S1=4 当n≥2时,an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,∴an=4n,n∈N*, 又当x≥n时,Tn=2-bn,∴bn=2-Tn, bn=Tn-Tn-1=(2-bn)-(2-bn-1),∴2bn=bn-1 ∴数列bn是等比数列,其首项为1,公比为,∴. (2)由(1)知,=. 由得,解得n≥3. 又n≥3时,成立,即,由于cn>0恒成立. 因此,当且仅当n≥3时cn+1<cn.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>1).设sn=a1b1+a2b2…..+anbn,Tn=a1b1-a2b2+…..+(-1)n-1anbn,n∈N+
(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;
(Ⅱ)若b1(6)=1,证明(1-q)S2n-(1+q)T2n=manfen5.com 满分网,n∈(10)N+
(Ⅲ)若正数n满足2≤n≤q,设k1,k2,…,kn和l1,l2,…,ln是1,2,…,n的两个不同的排列,c1=ak1b1+ak2b2+…+aknbn,c2=al1b1+al2b2+…+alnbn证明c1≠c2
查看答案
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(π为正整数).
(1)求数列{an}的通项公式;
(2)记S=a1+a2+…+an+…若对任意正整数n,kS≤Sn恒成立,求实数k的最大值.
查看答案
等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(Ⅰ)求r的值.
(Ⅱ)当b=2时,记bn=2(log2an=1)(n∈N+),证明:对任意的,不等式成立manfen5.com 满分网
查看答案
已知曲线Cn:x2-2nx+y2=0(n=1,2,…).从点P(-1,0)向曲线Cn引斜率为kn(kn>0)的切线ln,切点为Pn(xn,yn).
(1)求数列{xn}与{yn}的通项公式;
(2)证明:manfen5.com 满分网
查看答案
首项为正数的数列{an}满足an+1=manfen5.com 满分网(an2+3),n∈N+
(1)证明:若a1为奇数,则对一切n≥2,an都是奇数;
(2)若对一切n∈N+都有an+1>an,求a1的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.