本题考查的是直线与圆性质及其综合应用,由已知条件我们可以判定直线必过圆M:x2+y2+4x+2y+1=0的圆心,则不难求出(a,b)表示的点在平面直线直角坐标系中的位置,分析表达式(a-2)2+(b-2)2的几何意义,找出满足条件的点的坐标,即可求出答案.
【解析】
∵直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长
∴直线必过圆M:x2+y2+4x+2y+1=0的圆心
即圆心(-2,-1)点在直线l:ax+by+1=0上
则2a+b-1=0
则(a-2)2+(b-2)2表示点(2,2)至直线2a+b-1=0点的距离的平方
则其最小值d2==5
故选B