登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知点(1,)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{a...
已知点(1,
)是函数f(x)=a
x
(a>0,且a≠1)的图象上一点,等比数列{a
n
}的前n项和为f(n)-c,数列{b
n
}(b
n
>0)的首项为c,且前n项和S
n
满足S
n
-S
n-1
=
(n≥2).
(Ⅰ)求数列{a
n
}和{b
n
}的通项公式;
(Ⅱ)若数列{
}前n项和为T
n
,问满足T
n
>
的最小正整数n是多少?
(1)先根据点(1,)在f(x)=ax上求出a的值,从而确定函数f(x)的解析式,再由等比数列{an}的前n项和为f(n)-c求出数列{an}的公比和首项,得到数列{an}的通项公式;由数列{bn}的前n项和Sn满足Sn-Sn-1=可得到数列{}构成一个首项为1公差为1的等差数列,进而得到数列{}的通项公式,再由bn=Sn-Sn-1可确定{bn}的通项公式. (2)先表示出Tn再利用裂项法求得的表达式Tn,根据Tn>求得n. 【解析】 (Ⅰ)∵f(1)=a= ∴f(x)=()x, ∴a1=f(1)-c=-c, ∴a2=[f(2)-c]-[f(1)-c]=-,a3=[f(3)-c]-[f(2)-c]= 又数列{an}成等比数列, =-, ∵a1=-c ∴-=-c,∴c=1 又公比q== 所以an=()n-1=-()n,n∈N; ∵Sn-Sn-1==(n≥2) 又bn>0,>0,∴=1; ∴数列{}构成一个首项为1公差为1的等差数列, ∴=1+(n-1)×1=n,Sn=n2 当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1; 又b1=c=1适合上式,∴bn=2n-1(n∈N); (Ⅱ)Tn=++…+= =(1-)+(-)+()+…+=(1-)= 由>,得n> 满足的最小正整数为84.
复制答案
考点分析:
相关试题推荐
如图正三棱柱ABC-A
1
B
1
C
1
,
,AB=2,若N为棱AB中点.
(1)求证:AC
1
∥平面NB
1
C;
(2)求A
1
C
1
与平面NB
1
C所成的角正弦值.
查看答案
某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为
,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300的台式电脑一台,得到奖券4张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为η(元),用ξ表示η,并求η的数学期望.
查看答案
已知函数f(x)=2cosx•sin(x+
)-
.
(1)求函数f(x)的最小正周期T;
(2)在给定的坐标系中,用“五点法”作出函数f(x)在一个周期上的函数.
查看答案
在实数的原有运算法则中,定义新运算aⓧb=a-2b,则|xⓧ(1-x)|+|(1-x)ⓧx|>3的解集为
.
查看答案
已知两个不同的平面α、β和两条不重合的直线,m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α
②若m⊥α,m⊥β,则α∥β;
③若m⊥α,m∥n,n⊂β,则α⊥β;
④若m∥α,α∩β=n,则m∥n
其中不正确的命题的个数是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.