满分5 > 高中数学试题 >

已知函数.(a∈R) (1)当a=1时,求f(x)在区间[1,e]上的最大值和最...

已知函数manfen5.com 满分网.(a∈R)
(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;
(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.
(1)求出函数的导函数判断出其大于零得到函数在区间[1,e]上为增函数,所以f(1)为最小值,f(e)为最大值,求出即可;(2)令,则g(x)的定义域为(0,+∞).证g(x)<0在区间(1,+∞)上恒成立即得证.求出g′(x)分区间讨论函数的增减性得到函数的极值,利用极值求出a的范围即可. 解(Ⅰ)当a=1时,,. 对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数. ∴, (Ⅱ)令,则g(x)的定义域为(0,+∞). 在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0在区间(1,+∞)上恒成立. ∵. ①若,令g'(x)=0,得极值点x1=1,. 当x2>x1=1,即时,在(x2,+∞)上有g'(x)>0. 此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不合题意; 当x2<x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意; ②若,则有2a-1≤0,此时在区间(1,+∞)上恒有g'(x)<0. 从而g(x)在区间(1,+∞)上是减函数 要使g(x)<0在此区间上恒成立,只须满足. 由此求得a的范围是[,]. 综合①②可知,当a∈[,]时,函数f(x)的图象恒在直线y=2ax下方.
复制答案
考点分析:
相关试题推荐
已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网(n≥2).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{manfen5.com 满分网}前n项和为Tn,问满足Tnmanfen5.com 满分网的最小正整数n是多少?
查看答案
如图正三棱柱ABC-A1B1C1manfen5.com 满分网,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面NB1C;
(2)求A1C1与平面NB1C所成的角正弦值.

manfen5.com 满分网 查看答案
某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为manfen5.com 满分网,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300的台式电脑一台,得到奖券4张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为η(元),用ξ表示η,并求η的数学期望.
查看答案
已知函数f(x)=2cosx•sin(x+manfen5.com 满分网)-manfen5.com 满分网
(1)求函数f(x)的最小正周期T;
(2)在给定的坐标系中,用“五点法”作出函数f(x)在一个周期上的函数.

manfen5.com 满分网 查看答案
在实数的原有运算法则中,定义新运算aⓧb=a-2b,则|xⓧ(1-x)|+|(1-x)ⓧx|>3的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.