满分5 > 高中数学试题 >

设函数f(x)=p(x-)-2lnx,g(x)=(p是实数,e为自然对数的底数)...

设函数f(x)=p(x-manfen5.com 满分网)-2lnx,g(x)=manfen5.com 满分网(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求p的取值范围.
(1)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集. (2)由“函数f(x)的图象相切于点(1,0”求得切线l的方程,再由“l与g(x)图象相切”得到(p-1)x2-(p-1)x-e=0 由判别式求解即可. (3)因为“在[1,e]上至少存在一点x,使得f(x)>g(x)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较. 【解析】 (1)∵f’(x)=,要使f(x)为单调增函数,须f’(x)≥0恒成立, 即px2-2x+p≥0恒成立,即p≥=恒成立,又≤1, 所以当p≥1时,f(x)在(0,+∞)为单调增函数. 要使f(x)为单调减函数,须f’(x)≤0恒成立, 即px2-2x+0≤0恒成立,即p≤=恒成立,又>0, 所以当p≤0时,f(x)在(0,+∞)为单调减函数. 综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0(4分) (2)∵f’(x)=p+,∴f’(1)=2(p-1),设直线l:y=2(p-1)(x-1), ∵l与g(x)图象相切, ∴y=2(p-1)(x-1) 得(p-1)(x-1)=,即(p-1)x2-(p-1)x-e=0 y= 当p=1时,方程无解;当p≠1时由△=(p-1)2-4(p-1)(-e)=0, 得p=1-4e,综上,p=1-4e(4分) (3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e] ①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意 ②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数, 故只需f(x)max>g(x)min,x∈[1,e], 即:f(e)=p(e-)-2lne>2⇒p>. ③当0<p<1时,因x-≥0,x∈[1,e] 所以f(x)=p(x-)-2lnx≤(x-)-2lnx≤e--2lne<2不合题意 综上,p的取值范围为(,+∞)(5分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
查看答案
已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若manfen5.com 满分网且sinC=cosA
(Ⅰ)求角A、B、C的大小;
(Ⅱ)设函数manfen5.com 满分网,求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离.
查看答案
已知函数f(x)=ax3+bx2+c(a,b,c∈R,a≠0).
(1)若函数y=f(x)的图象经过点(0,0),(-1,0),求函数y=f(x)的单调区间;
(2)若a=b=1,函数y=f(x)与直线y=2的图象有两个不同的交点,求c的值.
查看答案
已知命题P:f(x)=x3-ax在(2,+∞)为增函数,命题q:g(x)=x2-ax+3在(1,2)为减函数.若p或q为真,p且q为假,求a的取值范围.
查看答案
已知向量manfen5.com 满分网=(sinθ,cosθ-2sinθ),manfen5.com 满分网=(1,2).
(1)若manfen5.com 满分网,求tanθ的值;
(2)若manfen5.com 满分网,求θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.