满分5 > 高中数学试题 >

已知等差数列{an}满足:a1=8,a5=0.数列{bn}的前n项和为 (1)求...

已知等差数列{an}满足:a1=8,a5=0.数列{bn}的前n项和为manfen5.com 满分网
(1)求数列{an}和{bn}的通项公式;
(2)令manfen5.com 满分网,试问:是否存在正整数n,使不等式bncn+1>bn+cn成立?若存在,求出相应n的值;若不存在,请说明理由.
(1)∵已知{an}为等差数列且a1=8,a5=0.故求{an}的通项公式可使用构造方程法,求出公差d及首项即可,而数列{bn},已知其前n项和为,故{bn}的通项公式可用来解答. (2)由(1)的结论,我们可以先写出cn的通项公式,再结合数列的单调性从n=1开始对bncn+1>bn+cn进行分类讨论,即可得到答案. 【解析】 (1)设数列{an}的公差为d,由a5=a1+4d1,得d1=-2, 得an=-2n+10. 由数列{bn}的前n和为 可知,当n=1时,, 当n≥2时,bn=Sn-Sn-1=2n-2,bn=2n-2当n=1时,得, 故数列{an}的通项公式为an=-2n+10, {bn}的通项公式为bn=2n-2. (2)假设存在正整数n使不等式bncn+1>bn+cn成立, 即要满足(cn-1)(bn-1)>0, 由,bn=2n-2, 所以数列{cn}单调减,数列{bn}单调增, ①当正整数n=1,2时,2n-2-1≤0, 所以bncn+1>bn+cn不成立; ②当正整数n=3,4时,cn-1>0,bn-1>0, 所以bncn+1>bn+cn成立; ③当正整数n≥5时,cn-1≤0,bn-1>0, 所以bncn+1>bn+cn不成立. 综上所述,存在正整数n=3,4时, 使不等式bncn+1>bn+cn成立.
复制答案
考点分析:
相关试题推荐
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AD,E是PD的中点
(1)求证:PB∥平面AEC;
(2)求证:平面PDC⊥平面AEC.

manfen5.com 满分网 查看答案
在△ABC中,已知AC=5,BC=1,manfen5.com 满分网
(1)求边AB的值;
(2)求sin(B-C)的值.
查看答案
已知函数manfen5.com 满分网,常数a∈R),若函数f(x)在x∈[2,+∞)上是增函数,则a的取值范围是    查看答案
已知F1,F2分别是椭圆manfen5.com 满分网的左、右焦点,以原点O为圆心、OF1为半径的圆与椭圆在y轴左侧交于A、B两点,若△F2AB为等边三角形,则椭圆的离心率为    查看答案
设函数f(x)=x3-3ax+b(a≠0).若曲线y=f(x)在点(2,f(2))处与直线y=8相切,则ab的值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.