满分5 > 高中数学试题 >

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a= .

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=   
这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形,当x=0时,不论a取何值,f(x)≥0都成立;当x>0时有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max,同理可得x<0时的a的范围,从而可得a的值. 【解析】 若x=0,则不论a取何值,f(x)≥0都成立; 当x>0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为:a≥ 设g(x)=,则g′(x)=, 所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减, 因此g(x)max=g()=4,从而a≥4; 当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为:a≤, g(x)=在区间[-1,0)上单调递增, 因此g(x)min=g(-1)=4,从而a≤4,综上a=4. 答案为:4
复制答案
考点分析:
相关试题推荐
曲线y=ex,y=e-x,x=1所围成的图形的面积为     查看答案
已知函数f(x)=x3-ax,若f(x)在R上单调递增,则实数a的取值范围为    查看答案
函数manfen5.com 满分网是幂函数,且其图象过原点,则m=    查看答案
(陕西卷理15A)不等式|x+3|-|x-2|≥3的解集为    查看答案
manfen5.com 满分网    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.