设函数f(x)=-x
3+3x+2分别在x
1、x
2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x
1,f(x
1))、(x
2,f(x
2)),该平面上动点P满足
,点Q是点P关于直线y=2(x-4)的对称点.求
(I)求点A、B的坐标;
(II)求动点Q的轨迹方程.
考点分析:
相关试题推荐
如图所示的长方体ABCD-A
1B
1C
1D
1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,
,M是线段B
1D
1的中点.
(Ⅰ)求证:BM∥平面D
1AC;
(Ⅱ)求证:D
1O⊥平面AB
1C.
查看答案
甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.
查看答案
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
查看答案
已知函数f(x)=4sin(π-x)cosx.
(1)求f(x)的最小正周期;
(2)若θ∈(0,π),
,求sinθ的值.
查看答案
f(x)=ax
3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=
.
查看答案