满分5 > 高中数学试题 >

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交...

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;
(3)若AB是△ABC外接圆的直径,且∠EAC=120°,BC=6,求AD的长.

manfen5.com 满分网
(1)两线段在同一个三角形中,故可以用证两底角相等,通过等边对等角来证两边相等; (2)由图形知,可以证明△FBA∽△FDB,由于角BFD是公共角,再证明角FAB与角FBD相等即可证出两三角形相似; (3)由题设条件可求得三角形ABC与三角形ACD的内角,又此两三角形都是直角三角形,故可借助直角三角形中的相关知识求AD的长. 【解析】 (1)因为∠EAC=∠ABC+∠ACB=∠ABC+∠BCF+∠ACF=∠ABC+∠BCF+∠ABF=∠BCF+∠FBC 又∠EAC=2∠FAB=2∠BCF 所以∠FCB=∠FBC, 所以FB=FC,(3分) (2)因为在△FBA∽△FDB中,∠BFD是公共角, 由于同弦所对的圆周角相等,故∠FAB等于∠FCB,又由(1)∠FCB=∠FBC 故可得∠FBC=∠FAB 所以△FBA∽△FDB,所以,整理得FB2=FA•FD(6分) (3)∠EAC=120°,所以∠BAC=60° 因为AB为直径,所以∠ACB=90°, ∴∠ABC=30°, 又∠DAC=60°,∠ACD=90°,可得∠ADC=30° 在直角三角形ABC中,由于BC=6,所以AC= 在直角三角形ADC中,可得(10分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(2-a)lnx+manfen5.com 满分网+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
查看答案
已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设manfen5.com 满分网
(Ⅰ)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;
(Ⅱ)若λ∈[manfen5.com 满分网manfen5.com 满分网]求当|PQ|最大时,直线PQ的方程.
查看答案
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数.
(2)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义.
(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.
查看答案
在如图所示的多面体中,已知正方形ABCD和
直角梯形BDEF所在的平面互相垂直,EF∥BD,
ED⊥BD,AD=manfen5.com 满分网,EF=ED=1,点P为线段
EF上任意一点.
(Ⅰ)求证:CF⊥AP;
(Ⅱ)求二面角B-AF-E的余弦值.

manfen5.com 满分网 查看答案
已知在公比为实数的等比数列{an}中,a3=4,且a4,a5+4,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求manfen5.com 满分网的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.