满分5 > 高中数学试题 >

设椭圆的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为...

设椭圆manfen5.com 满分网的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为P,Q,且F1PF2Q为正方形.
(1)求椭圆的离心率;
(2)若过点B作此正方形的外接圆的切线在x轴上的一个截距为manfen5.com 满分网,求此椭圆方程.

manfen5.com 满分网
(1)根据题意可表示出P的坐标和F1的坐标,利用正方形的性质推断出,进而利用椭圆a,b和c的关系求得a和b的关系,则椭圆的离心率可得. (2)先根据B的坐标,利用几何关系求得一条切线的斜率,利用点斜式表示出直线的方程,利用截距求得c,进而求得a和b,则椭圆的方程可得. 【解析】 (1)由题意知:,设F1(-c,0) 因为F1PF2Q为正方形,所以 即b=3c,∴b2=9c2,即a2=10c2, 所以离心率 (2)因为B(0,3c),由几何关系可求得一条切线的斜率为 所以切线方程为, 因为在轴上的截距为,所以c=1, 所求椭圆方程为:
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网的定义域为manfen5.com 满分网,值域为[1,4].
(1)求m,n的值;
(2)若f(x)=2,求x的值.
查看答案
已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.
(1)求证:F1G∥平面BB1E1E;
(2)求证:平面F1AE⊥平面DEE1D1
(3)求四面体EGFF1的体积.

manfen5.com 满分网 查看答案
如图,在△OAB中,已知P为线段AB上的一点,manfen5.com 满分网
(1)若manfen5.com 满分网,求x,y的值;
(2)若manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网的夹角为60°时,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知函数f(x)=ax2-2manfen5.com 满分网,g(x)=x2(2a2-x2)(a∈Z*,b∈Z),若存在x,使f(x)为f(x)的最小值,g(x)为g(x)的最大值,则此时数对(a,b)为    查看答案
已知f(x)=manfen5.com 满分网,f(3+2sinθ)<m2+3m-2对一切θ∈R恒成立,则实数m的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.