“AB=3cm,BC=4cm,AC=5cm”这是一个常用的直角三角形的长度组合,故AC即为A、B、C三点所在圆的直径,取AC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMA中,OA为cm,MA=2.5cm,则可求得球心到平面ABC的距离OM.
【解析】
如图所示:
∵AB=3cm,BC=4cm,AC=5cm,
∴∠CBA=90°
∴取AC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMA中,OA=cm,MA=2.5cm,
∴OM=cm,即球心到平面ABC的距离为cm.
故答案为:.