(1)把n=1代入递推公式(an+3)可求a1的值
(2)由,可得
两式相减结合an>0的条件整理可得an-an-1=2,从而利用等差数列的通项公式求出an
(3)由(2)中求出Sn,代入求bn=,利用裂项求和求出Tn
【解析】
(1)由a1=S1=,及an>0,得a1=3
(2)由
得.∴当n≥2时,
∴2(an+an-1)=(an+an-1)(an-an-1)
∵an+an-1>0∴an-an-1=2,
∴由(1)知,{an}是以3为首项,2为公差的等差数列,∴an=2n+1.
(3)由(2)知Sn=n(n+2)∴,
Tn=b1+b2+…+bn
=
=
=