设f(x)=ax
3+bx
2+cx的极小值为-8,其导函数y=f'(x)的图象经过点
,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[-3,3]都有f(x)≥m
2-14m恒成立,求实数m的取值范围.
考点分析:
相关试题推荐
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)<0,且f=f(x)+f(y).
(Ⅰ)证明f(x)在定义域上是减函数;
(Ⅱ)如果
,求满足不等式
的x的取值范围.
查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
定义在R上的函数f(x)满足f(x+2)=-f(x),且当x∈[-1,1]时,f(x)=x
3.
(1)求f(x)在[1,5]上的表达式;
(2)若A={x|f(x)>a,x∈R},且A≠ф,求实数a的取值范围.
查看答案
已知函数f(x)=-x
2+3x+1x∈[m,m+1].
(1)求f(x)的最大值g(m);
(2)当m≥1,求g(m)的最大值.
查看答案
设集合A={x|x
2<4},
.
(1)求集合A∩B;
(2)若不等式2x
2+ax+b<0的解集为B,求a,b的值.
查看答案