满分5 > 高中数学试题 >

已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不...

已知定义域为R的函数manfen5.com 满分网是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(Ⅰ)利用奇函数定义f(x)=-f(x)中的特殊值求a,b的值; (Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围. 【解析】 (Ⅰ)因为f(x)是奇函数,所以f(0)=0, 即 又由f(1)=-f(-1)知. 所以a=2,b=1. (Ⅱ)由(Ⅰ)知, 易知f(x)在(-∞,+∞)上为减函数. 又因为f(x)是奇函数, 所以f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因为f(x)为减函数,由上式可得:t2-2t>k-2t2. 即对一切t∈R有:3t2-2t-k>0, 从而判别式. 所以k的取值范围是k<-.
复制答案
考点分析:
相关试题推荐
设函数f(x)=2x+a•2-x-1(a为实数).
(1)若a<0,用函数单调性定义证明:y=f(x)在(-∞,+∞)上是增函数;
(2)若a=0,y=g(x)的图象与y=f(x)的图象关于直线y=x对称,求函数y=g(x)的解析式.
查看答案
例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤manfen5.com 满分网对一切实数x都成立?
查看答案
已知函数manfen5.com 满分网,当x∈(0,+∞)时,恒有f(x)>0,求m的取值范围.
查看答案
是否存在实数a,使函数manfen5.com 满分网为奇函数,同时使函数manfen5.com 满分网为偶函数,证明你的结论.
查看答案
函数manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.