满分5 > 高中数学试题 >

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数. (1)若x=1是...

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
(1)由x=1是函数f(x)的一个极值点则知f'(1)=0,代入导函数即可; (2)要求函数f(x)在区间(-1,0)上是增函数,则要求导函数f'(x)在区间(-1,0)大于等于零即可,另外要注意对a的讨论; (3)要求函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,即求函数g(x)的极值并将之与函数端点值 g(0),g(2)进行比较大小,得出在函数g(x)[0,2]上的最大值只能为g(0)或g(2),再根据条件在x=0处取得最大值,得到g(0)≥g(2)即可 【解析】 (1)∵f(x)=ax3-3x2 ∴f'(x)=3ax2-6x=3x(ax-2). ∵x=1是f(x)的一个极值点, ∴f'(1)=0, ∴a=2 (2)①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意; ②当a≠0时,f'(x)=3ax,令f'(x)=0得:x1=0,x2= 当a>0时,对任意x∈(-1,0),f'(x)>0, ∴a>0 (符合题意) 当a<0时,当时,f'(x)>0, ∴,∴-2≤a<0(符合题意) 综上所述,a≥-2. (3)a>0,g(x)=ax3+(3a-3)x2-6x,x∈[0,2]. g'(x)=3ax2+2(3a-3)x-6=3[ax2+2(a-1)x-2], 令g'(x)=0,即ax2+2(a-1)x-2=0(*),显然有△=4a2+4>0. 设方程(*)的两个根为x1,x2,由(*)式得,不妨设x1<0<x2. 当0<x2<2时,g(x2)为极小值 所以g(x)在[0,2]上的最大值只能为g(0)或g(2) 当x2≥2时,由于g(x)在[0,2]上是单调递减函数 所以最大值为g(0),所以在[0,2]上的最大值只能为g(0)或g(2) 又已知g(x)在x=0处取得最大值 所以g(0)≥g(2) 即0≥20a-24,解得a≤,又因为a>0,所以. 故答案为:(1)a=2;(2)a≥-2;(3)
复制答案
考点分析:
相关试题推荐
知数列{an}满足a1=a(a为常数,a∈R),an+1=2n-3an(n∈N*),设bn=manfen5.com 满分网(n∈N*).
(1)求数列{bn}所满足的递推公式;
(2)求数列{bn}通项公式.
查看答案
在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,AB=1,直线PB与底面ABCD所成的角为45°,四棱锥P-ABCD的体积V=manfen5.com 满分网,E为PB的中点,点F在棱BC上移动.
(1)求证:PF⊥AE;
(2)当F为BC中点时,求点F到平面BDP的距离;
(3)在侧面PAD内找一点G,使GE⊥平面PAC.

manfen5.com 满分网 查看答案
已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若manfen5.com 满分网,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量manfen5.com 满分网,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,manfen5.com 满分网];
②函数y=f(x)的图象关于直线x=manfen5.com 满分网(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-manfen5.com 满分网manfen5.com 满分网]上是增函数.
其中正确的命题的序号    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.