已知函数
,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间
内,总存在m+1个数a
1,a
2,…,a
m,a
m+1,使得不等式g(a
1)+g(a
2)+…+g(a
m)<g(a
m+1)成立,求m的最大值.
考点分析:
相关试题推荐
已知定义在R上的函数f(x)=x
2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
知数列{a
n}满足a
1=a(a为常数,a∈R),a
n+1=2
n-3a
n(n∈N
*),设b
n=
(n∈N
*).
(1)求数列{b
n}所满足的递推公式;
(2)求数列{b
n}通项公式.
查看答案
在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,AB=1,直线PB与底面ABCD所成的角为45°,四棱锥P-ABCD的体积V=
,E为PB的中点,点F在棱BC上移动.
(1)求证:PF⊥AE;
(2)当F为BC中点时,求点F到平面BDP的距离;
(3)在侧面PAD内找一点G,使GE⊥平面PAC.
查看答案
已知圆C方程为:x
2+y
2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若
,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量
,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),
.
(1)若
,求角α的值;
(2)若
,求
的值.
查看答案