满分5 > 高中数学试题 >

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,...

已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间manfen5.com 满分网内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
解此题的第一个突破点是第一(1)用导数的符号为正求单调区间,(2)求过切点的切线方程,找出两切点关系,再利用两点间的距离公式求解即可,(3)利用函数的单调性转化为恒成立问题. 【解析】 (1)当,解得x>,或x<-. ∴函数f(x)有单调递增区间为, (2)设M、N两点的横坐标分别为x1、x2, ∵,∴切线PM的方程为:. 又∵切线PM过点P(1,0),∴有. 即x12+2tx1-t=0.(1) 同理,由切线PN也过点(1,0),得x22+2tx2-t=0.(2) 由(1)、(2),可得x1,x2是方程x2+2tx-t=0的两根, ∴ 把(*)式代入,得, 因此,函数g(t)的表达式为g(t)=(t>0) (3)易知g(t)在区间上为增函数, ∴g(2)≤g(ai)(i=1,2,,m+1). 则m•g(2)≤g(a1)+g(a2)++g(am). ∵g(a1)+g(a2)++g(am)<g(am+1)对一切正整数n成立, ∴不等式m•g(2)<g(n+)对一切的正整数n恒成立, 即m<对一切的正整数n恒成立 ∵, ∴. ∴ 由于m为正整数,∴m≤6.又当m=6时,存在a1=a2═am=2,am+1=16,对所有的n满足条件. 因此,m的最大值为6.
复制答案
考点分析:
相关试题推荐
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
知数列{an}满足a1=a(a为常数,a∈R),an+1=2n-3an(n∈N*),设bn=manfen5.com 满分网(n∈N*).
(1)求数列{bn}所满足的递推公式;
(2)求数列{bn}通项公式.
查看答案
在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,AB=1,直线PB与底面ABCD所成的角为45°,四棱锥P-ABCD的体积V=manfen5.com 满分网,E为PB的中点,点F在棱BC上移动.
(1)求证:PF⊥AE;
(2)当F为BC中点时,求点F到平面BDP的距离;
(3)在侧面PAD内找一点G,使GE⊥平面PAC.

manfen5.com 满分网 查看答案
已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若manfen5.com 满分网,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量manfen5.com 满分网,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.