(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),根据导函数求得f(x)的表达式,再根据点(n,Sn)(n∈N*)均在函数
y=f(x)的图象上,求出an的递推关系式,
(Ⅱ)把(1)题中an的递推关系式代入bn,根据裂项相消法求得Tn,最后解得使得对所有n∈N*都成立的最小正整数m.
【解析】
(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b,由于f′(x)=6x-2,得
a=3,b=-2,所以f(x)=3x2-2x.
又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
所以Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,
所以,an=6n-5(n∈N*)
(Ⅱ)由(Ⅰ)得知==,
故Tn===(1-).
因此,要使(1-)<(n∈N*)成立的m,必须且仅须满足≤,即m≥10,
所以满足要求的最小正整数m为10.