(1)求出f′(x),因为函数在x=-与x=1时都取得极值,所以得到f′(-)=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间;
(2)根据(1)函数的单调性,由于x∈[-1,2]恒成立求出函数的最大值值为f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范围即可.
解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b
由解得,
f'(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
x (-∞,-) - (-,1) 1 (1,+∞)
f′(x) + - +
f(x) ↑ 极大值 ↓ 极小值 ↑
所以函数f(x)的递增区间是(-∞,-)和(1,+∞),递减区间是(-,1).
(2),
当x=-时,f(x)=+c为极大值,而f(2)=2+c,所以f(2)=2+c为最大值.
要使f(x)<c2对x∈[-1,2]恒成立,须且只需c2>f(2)=2+c.
解得c<-1或c>2.