满分5 > 高中数学试题 >

函数y=f(x)的图象是圆心在原点的单位圆的两段弧(如图),则不等式f(x)<f...

函数y=f(x)的图象是圆心在原点的单位圆的两段弧(如图),则不等式f(x)<f(-x)+2x的解集为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
根据图象得知是奇函数,据此将“不等式f(x)<f(-x)+2x”转化为“f(x)<x”,再令y=f(x),y=x,利用图象求解. 【解析】 如图所示:函数是奇函数 ∴不等式f(x)<f(-x)+2x可转化为:f(x)<x, 令y=f(x),y=x 如图所示: 故选A.
复制答案
考点分析:
相关试题推荐
设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:
(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x:
(2)当x∈(0,2)时,f(x)≤manfen5.com 满分网
(3)f(x)在R上的最小值为0.
求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
查看答案
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值范围.
查看答案
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
查看答案
已知函数f(x)=manfen5.com 满分网(a>0且a≠1).
(1)求f(x)的定义域和值域;
(2)讨论f(x)的单调性.
查看答案
已知集合A={x|x2-ax≤x-a},B={x|1≤log2(x+1)≤2},C={x|x2+bx+c>0},
(1)若A∩B=A,求a的取值范围.
(2)若B∩C=φ,且B∪C=R,求b、c的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.