满分5 > 高中数学试题 >

如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠B...

manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件; (2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可; (3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A-DE-P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A-DE-P是直二面角. 【解析】 (1)∵PA⊥底面ABC,∴PA⊥BC. 又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC. (2)∵D为PB的中点,DE∥BC, ∴DE=BC. 又由(1)知,BC⊥平面PAC, ∴DE⊥平面PAC,垂足为点E, ∴∠DAE是AD与平面PAC所成的角. ∵PA⊥底面ABC,∴PA⊥AB. 又PA=AB,∴△ABP为等腰直角三角形, ∴AD=AB. 在Rt△ABC中,∠ABC=60°,∴BC=AB, ∴在Rt△ADE中,sin∠DAE===, 即AD与平面PAC所成角的正弦值为. (3)∵DE∥BC,又由(1)知,BC⊥平面PAC, ∴DE⊥平面PAC. 又∵AE⊂平面PAC,PE⊂平面PAC, ∴DE⊥AE,DE⊥PE, ∴∠AEP为二面角A-DE-P的平面角. ∵PA⊥底面ABC,∴PA⊥AC, ∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC. 这时,∠AEP=90°, 故存在点E使得二面角A-DE-P是直二面角.
复制答案
考点分析:
相关试题推荐
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=manfen5.com 满分网AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值.

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG.
查看答案
一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为    
manfen5.com 满分网 manfen5.com 满分网 manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.