欲证:三条直线DA,CE,D1F交于一点,先将其中一条直线看成是两个平面的交线,再证明另外两条直线的交点是这两个平面的公共点,由平面的基本性质,从而证得三条直线交于一点.
证明:连接EF、CD1、BA1,在正方体ABCD-A1B1C1D1中,
点E,F分别是棱AB,AA1的中点,∴EF∥BA1,,
又A1D1∥B1C1,A1D1=B1C1∴四边形A1BCD1为平行四边形,∴BA1∥CD1BA1=CD1
∴EF∥CD1,∴四边形是梯形,
∴D1F与CE的延长线交于一个点,设为O点,
则有O∈D1F,D1F⊂平面AD1,
∴O∈平面AD1,同理O∈平面AC,且平面AD1∩平面AC=AD
∴O∈AD,∴三条直线DA,CE,D1F交于一点.