满分5 > 高中数学试题 >

如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视...

如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
manfen5.com 满分网

manfen5.com 满分网
(1)结合三视图,得到几何体的相关棱长,求四棱锥P-ABCD的底面面积和高,然后求出体积; (2)连接AC交BD于O点,取PC中点F,连接OF,要证明BD∥平面PEC,只需证明BD平行平面PEC内的直线EF即可; (3)连接BP,要证AE⊥PG,只需证明AE⊥平面PBG,即可证明AE⊥PG. 【解析】 (1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4,BE=2,AB=AD=CD=CB=4, ∴VP-ABCD=PA×SABCD=×4×4×4=. (2)证明:连接AC交BD于O点, 取PC中点F,连接OF, ∵EB∥PA,且EB=PA, 又OF∥PA,且OF=PA, ∴EB∥OF,且EB=OF, ∴四边形EBOF为平行四边形, ∴EF∥BD. 又EF⊂平面PEC,BD⊄平面PEC,所以BD∥平面PEC. (3)连接BP,∵==,∠EBA=∠BAP=90°, ∴△EBA∽△BAP,∴∠PBA=∠BEA, ∴∠PBA+∠BAE=∠BEA+∠BAE=90°, ∴PB⊥AE. 又∵BC⊥平面APEB,∴BC⊥AE, ∴AE⊥平面PBG,∴AE⊥PG.
复制答案
考点分析:
相关试题推荐
一艘轮船在以每小时16公里速度沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km处,受影响的初始范围是以台风中心为圆心半径长为7km的圆形区域,并且圆形区域的半径正以以每小时10公里的速度扩大,且圆形区域最大活动半径为47公里.已知港口位于台风中心正北60km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?假设轮船在航行过程中,不会受到台风的影响,则轮船离此时圆形区域边缘最近距离是多少?
查看答案
已知函数manfen5.com 满分网
(Ⅰ)判断并证明函数f(x)的奇偶性;
(Ⅱ)若x1<x2,判断 f (x1)和f (x2)的大小,并给出证明.
查看答案
如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).
(Ⅰ)求圆心M在l1上且与直线l2相切于点P的圆⊙的方程.
(Ⅱ)在(Ⅰ)的条件下;若直线l1分别与直线l2、圆⊙依次相交于A、B、C三点,利用代数法验证:|AP|2=|AB|•|AC|.

manfen5.com 满分网 查看答案
如图ABCD-A1B1C1D1是正方体,M、N分别是线段AD1和BD上的中点
(Ⅰ)证明:直线MN∥平面B1D1C;
(Ⅱ)设正方体ABCD-A1B1C1D1棱长为a,若以D为坐标原点,分别以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,试写出B1、M两点的坐标,并求线段B1M的长.

manfen5.com 满分网 查看答案
已知函数f(x)=x2-9x,当x∈[n,n+1](n∈N*)时,f(x)所有可能取的整数值有且只有1个,则n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.