满分5 > 高中数学试题 >

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. ...

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x,使得f(x)=x,求函数f(x)的解析表达式.
(I)由题意知f(f(2)-22+2)=f(2)-22+2,f(1)=1,由上此可推出f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x,因为f(x)=x,所以x-x2=0,故x=0或x=1.由此可推导出f(x)=x2-x+1(x∈R). 【解析】 (I)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x 所以f(f(2)-22+2)=f(2)-22+2 又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1 若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x. 又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x 在上式中令x=x,有f(x)-x2+x=x 又因为f(x)=x,所以x-x2=0,故x=0或x=1 若x=0,则f(x)-x2+x=0,即f(x)=x2-x 但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x≠0 若x=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件. 综上,所求函数为f(x)=x2-x+1(x∈R)
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)是奇函数,在(0,+∞)内是减函数,且f(x)<0,试问:F(x)=manfen5.com 满分网在(-∞,0)内单调性如何?并证明之
查看答案
已知函数f(x)=manfen5.com 满分网,x∈[1,3],求函数的最大值和最小值.
查看答案
设集合A={2,3,a2+2a-3},集合B={|a+3|,2 },已知5∈A,且5∉B.求a的值.
查看答案
若集合A={1,3,x},B={x2,1},且A∪B={1,3,x},求满足条件的实数x的值.
查看答案
设A={x|ax+1=0 },B={x|x2+x-2=0},若A⊆B,求实数a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.