满分5 > 高中数学试题 >

一束光线l自A(-3,3)发出,射到x轴上,被x轴反射到⊙C:x2+y2-4x-...

一束光线l自A(-3,3)发出,射到x轴上,被x轴反射到⊙C:x2+y2-4x-4y+7=0上.
(1)求反射线通过圆心C时,光线l的方程;
(2)求在x轴上,反射点M的范围.
(1)由题意,利用物理的光学知识可知入射光线上的任意一点关于x轴对称的点必在其反射线上,由于反射线过圆心,有光线的可逆性知,反射线上的任意点圆心关于x轴对称的点也必在入射光线上,然后由入射光线上已知两点写出所求的直线方程; (2)由题意和(1)可知反射线必过定点A′(次点是点A关于x轴对称的点),利用几何知识知当反射线与已知圆相切时恰好为范围的临界状态. 【解析】 ⊙C:(x-2)2+(y-2)2=1 (1)C关于x轴的对称点C′(2,-2),过A,C′的方程:x+y=0为光线l的方程. (2)A关于x轴的对称点A′(-3,-3),设过A′的直线为y+3=k(x+3),当该直线与⊙C相切时, 有或 ∴过A′,⊙C的两条切线为令y=0,得 ∴反射点M在x轴上的活动范围是
复制答案
考点分析:
相关试题推荐
已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:x-2y-3=0上,求此圆的标准方程.
查看答案
过点(-5,-4)作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
查看答案
manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点
(1)证明:AD⊥D1F;
(2)求AE与D1F所成的角;
(3)证明:面AED⊥面A1FD1
查看答案
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

manfen5.com 满分网 查看答案
α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.