已知直线l:y=kx+1与圆C:(x-2)
2+(y-3)
2=1相交于A,B两点.
(1)求弦AB的中点M的轨迹方程;
(2)若O为坐标原点,S(k)表示△OAB的面积,
,求f(k)的最大值.
考点分析:
相关试题推荐
已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案
已知两点F
1(-2,0),F
2(2,0),曲线C上的动点M满足|MF
1|+|MF
2|=2|F
1F
2|,直线MF
2与曲线C交于另一点P.
(Ⅰ)求曲线C的方程;
(Ⅱ)设N(-4,0),若
=3:2,求直线MN的方程.
查看答案
已知抛物线C:y
2=4x,直线l:y=kx+b与C交于A,B两点,O为坐标原点.
(1)当k=1,且直线l过抛物线C的焦点时,求|AB|的值;
(2)当直线OA,OB的倾斜角之和为45°时,求k,b之间满足的关系式,并证明直线l过定点.
查看答案
已知椭圆C的中心在原点,一个焦点
,且长轴长与短轴长的比是
.
(1)求椭圆C的方程;
(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;
(3)求△PAB面积的最大值.
查看答案
双曲线
(a>0,b>0)的两个焦点为F
1,F
2,若P为其上一点,且|PF
1|=2|PF
2|,则双曲线离心率的取值范围是
.
查看答案