如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,
,点F是PB的中点,点E在边BC上移动.
(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)当E为BC中点时,求异面直线PC与DE所成角的余弦值;
(Ⅲ)求证:无论点E在边BC的何处,都有PE⊥AF.
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
(Ⅰ)求证:PB∥平面EFH;
(Ⅱ)求证:PD⊥平面AHF;
(Ⅲ)求二面角H-EF-A的大小.
查看答案
如图,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,
,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当点D运动到线段AB的中点时,求二面角D-CO-B的大小;
(Ⅲ)当CD与平面AOB所成角最大时,求三棱锥C-OBD的体积.
查看答案
如图正三棱柱ABC-A
1B
1C
1,
,AB=2,若N为棱AB中点.
(1)求证:AC
1∥平面NB
1C;
(2)求A
1C
1与平面NB
1C所成的角正弦值.
查看答案
在三棱锥P-ABC中,△PAC和△PBC是边长为
的等边三角形,AB=2,O是AB中点.
(1)在棱PA上求一点M,使得OM∥平面PBC;
(2)求证:平面PAB⊥平面ABC;
(3)求二面角P-BC-A的余弦值.
查看答案
已知三棱柱ABC-A
1B
1C
1的侧棱垂直于底面,∠BAC=90°,AB=AA
1=2,AC=1,M,N分别是A
1B
1,BC的中点.
(Ⅰ)证明:AB⊥AC
1;
(Ⅱ)证明:MN∥平面ACC
1A
1;
(Ⅲ)求二面角M-AN-B的余弦值.
查看答案