本题很容易得到B={y|y>0},需要分类讨论,先对二次项系数m+2是否为0来讨论.另外当m+2≠0时,f(x)=(m+2)x2+2mx+1的图象必须是开口向上的,否则就没有A⊆B成立了.
然后对判别式分△<0和△≥0进行讨论求解.
【解析】
设f(x)=(m+2)x2+2mx+1,由已知可得B={y|y>0},
(1)当m+2=0即m=-2时有-4x+1≤0,即有x≥,所以有A⊆B成立.
(2)当m+2≠0,易知须有m+2>0,即有m>-2.有:
△=(2m)2-4×(m+2)×1<0 …①
或…②
解①得:-1<m<2,
解②得:-2<m≤-1
即有:-2<m<2
综合(1)(2)得m的取值范围是:-2≤m<2
故选:A