(1)直接把n=2,3代入数列递推公式即可求出a2,a3;
(2)先把bn=a2n,转化为bn=a2n=a(2n-1)+1=a2n-1+(2n-1)=[a2n-2-2(2n-2)]+(2n-1)=a2(n-1)+1=bn-1+1,即求出数列{bn}的递推关系式,再构造新的等比数列来求数列{bn}的通项公式;
(3)把数列{an}中的所有项都用数列{bn}的通项表示出来,再采用分组求和法求其前2n+1项的和即可.
【解析】
(1)当n=2时,a2=+1=+1=;
当n=3时,a3=a2-2×2=-4=-.
(2)当n≥2时,bn=a2n=a(2n-1)+1=a2n-1+(2n-1)
=[a2n-2-2(2n-2)]+(2n-1)=a2(n-1)+1=bn-1+1
∴bn-2=(bn-1-2),又b1-2=a2-2=-,
∴bn-2=-•()n-1=-()n,即bn=2-()n.
(3)∵a2n+1=a2n-4n=bn-4n
∴S2n+1=a1+a2+…+a2n+a2n+1
=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1)
=(b1+b2+…+bn)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)]
=a1+2(b1+b2+…+bn)-4×(1+2+…+n)
=1+2(2n-)-4×
=()n-1-2n2+2n-1.