满分5 > 高中数学试题 >

在△ABC中,角A、B、C所对的边分别为a、b、C、若(b-c)cosA=aco...

在△ABC中,角A、B、C所对的边分别为a、b、C、若(manfen5.com 满分网b-c)cosA=acosC,则cosA=   
先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值. 【解析】 由正弦定理,知 由(b-c)cosA=acosC可得 (sinB-sinC)cosA=sinAcosC, ∴sinBcosA=sinAcosC+sinCcosA =sin(A+C)=sinB, ∴cosA=. 故答案为:
复制答案
考点分析:
相关试题推荐
已知P={-1,0,manfen5.com 满分网},Q={y|y=sin θ,θ∈R},则P∩Q=    查看答案
已知manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网,则k=    查看答案
已知函数f(x)=manfen5.com 满分网,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间manfen5.com 满分网上,f(x)>0恒成立,求a的取值范围.
查看答案
已知椭圆C的左、右焦点坐标分别是manfen5.com 满分网manfen5.com 满分网,离心率是manfen5.com 满分网,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.
查看答案
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.