满分5 > 高中数学试题 >

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)...

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数manfen5.com 满分网manfen5.com 满分网
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.
(1)当a=1时,易知f(x)在(-∞,0)上递减,有f(x)>f(0)=3,再有给出的定义判断; (2)由函数f(x)在[0,+∞)上是以3为上界的有界函数,结合定义则有|f(x)|≤3在[0,+∞)上恒成立,再转化为在[0,+∞)上恒成立即可; (3)据题意先研究函数g(x)在[0,1]上的单调性,确定函数g(x)的范围,即分别求的最大值和最小值,根据上界的定义,T(m)不小于最大值,从而解决. 【解析】 (1)当a=1时, 因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3, 即f(x)在(-∞,1)的值域为(3,+∞)故不存在常数M>0,使|f(x)|≤M成立 所以函数f(x)在(-∞,1)上不是有界函数.(4分) (2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.(5分) -3≤f(x)≤3, ∴在[0,+∞)上恒成立(6) ∴(7分) 设2x=t,,,由x∈[0,+∞)得t≥1, 设1≤t1<t2, 所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,(9分) h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1 所以实数a的取值范围为[-5,1].(10分) (3), ∵m>0,x∈[0,1] ∴g(x)在[0,1]上递减,(12分) ∴g(1)≤g(x)≤g(0)即(13分) ①当,即时,,(12分) 此时,(14分) ②当,即时,, 此时, 综上所述,当时,T(m)的取值范围是; 当时,T(m)的取值范围是[,+∞)(16分)
复制答案
考点分析:
相关试题推荐
对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
查看答案
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加manfen5.com 满分网x成,要求售价不能低于成本价.
(1)设该商店一天的营业额为y,试求y与x之间的函数关系式y=f(X),并写出定义域;
(2)若再要求该商品一天营业额至少10260元,求x的取值范围.
查看答案
如图,已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=2.
(1)若点E、F分别在棱PB、AD上,且manfen5.com 满分网=4manfen5.com 满分网manfen5.com 满分网=4manfen5.com 满分网,求证:EF⊥平面PBC;
(2)若点G在线段PA上,且三棱锥G-PBC的体积为manfen5.com 满分网,试求线段PG的长.

manfen5.com 满分网 查看答案
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知当x∈[manfen5.com 满分网manfen5.com 满分网]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.