满分5 > 高中数学试题 >

如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE...

如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥C D′;
(2)求二面角D′-BC-E的正切值.

manfen5.com 满分网
(1)欲证BE⊥CD′,先证BE⊥面D′EC,欲证线面垂直先证线线垂直,根据线面垂直的判定定理可证得; (2)先以EB,EC为x、y轴,过E垂直平面BEC的射线为z轴,建立空间直角坐标系,设出平面D′BC的法向量,求出两平面的法向量的所成角的余弦值,再求出其正切值. 【解析】 (1)∵AD=2AB=2,E是AD的中点, ∴△BAE,△CDE是等腰直角三角形, 易知,∠BEC=90°,即BE⊥EC. 又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC, ∴BE⊥面D′EC,又CD′⊂面D′EC, ∴BE⊥CD′. (2)如图以EB,EC为x、y轴,过E垂直平面BEC的射线为z轴,建立空间直角坐标系. 则B(,0,0),C(0,,0),D′(0,,),, 设平面BEC的法向量为,平面D′BC的法向量为,, 取, ∴. tan<,>=, ∴二面角D′-BC-E的正切值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD.
(1)取PD中点F,求证:PB∥平面AFC.
(2)求二面角A-PB-E的余弦值.
查看答案
设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设x≥1,f(x)≥1,且f(f(x))=x,求证:f(x)=x
查看答案
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F1AF2的角平分线所在直线的方程.

manfen5.com 满分网 查看答案
定义在R上的函数f(x)满足f(x+2)=-f(x),且当x∈[-1,1]时,f(x)=x3
(1)求f(x)在[1,5]上的表达式;
(2)若A={x|f(x)>a,x∈R},且A≠ф,求实数a的取值范围.
查看答案
(1)求证:manfen5.com 满分网
(2)a,b分别取何值时,上面不等式取等号.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.