满分5 > 高中数学试题 >

已知A(-2,0)、B(2,0),点C、点D依次满足. (1)求点D的轨迹方程;...

已知A(-2,0)、B(2,0),点C、点D依次满足manfen5.com 满分网
(1)求点D的轨迹方程;
(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为manfen5.com 满分网,且直线l与点D的轨迹相切,求该椭圆的方程.
(1)设C、D点的坐标分别为C(x,y),D(x,y),欲求点D的轨迹方程,即寻找x,y之间 的关系式,利用向量间的关系求出P点的坐标后代入距离公式即可得; (2)设椭圆方程为,根据圆的切线性质及中点条件,利用待定系数法求出待定系数a,b即可. 【解析】 (1)设C、D点的坐标分别为C(x,y),D(x,y), 则),, 则, 故. 又 代入中,整理得x2+y2=1, 即为所求点D的轨迹方程. (2)易知直线l与x轴不垂直,设直线l的方程为y=k(x+2),① 又设椭圆方程为,② 因为直线l:kx-y+2k=0与圆x2+y2=1相切. 故, 解得.将①代入②整理得,(a2k2+a2-4)x2+4a2k2x+4a2k2-a4+4a2=0,③ 将代入上式, 整理得, 设M(x1,y1),N(x2,y2), 则, 由题意有,求得. 经检验,此时③的判别式 故所求的椭圆方程为.
复制答案
考点分析:
相关试题推荐
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为manfen5.com 满分网,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11阶杨辉三角

查看答案
(1)若(1+x)n的展开式中,x3的系数是x的系数的7倍,求n;
(2)若(ax+1)7(a≠0)的展开式中,x3的系数是x2的系数与x4的系数的等差中项,求a;
(3)已知(2x+xlgx8的展开式中,二项式系数最大的项的值等于1120,求x.
查看答案
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本人教A版人教B版苏教版北师大版
人数2015510
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的变分布列和数学期望.
查看答案
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是manfen5.com 满分网,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利?
查看答案
如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥C D′;
(2)求二面角D′-BC-E的正切值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.