满分5 > 高中数学试题 >

在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处...

在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40manfen5.com 满分网海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=manfen5.com 满分网,0°<θ<90°)且与点A相距10manfen5.com 满分网海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

manfen5.com 满分网
(1)先根据题意画出简图确定AB、AC、∠BAC的值,根据sinθ=求出θ的余弦值,再由余弦定理求出BC的值,从而可得到船的行驶速度. (2)先假设直线AE与BC的延长线相交于点Q,根据余弦定理求出cos∠ABC的值,进而可得到sin∠ABC的值,再由正弦定理可得AQ的长度,从而可确定Q在点A和点E之间,根据QE=AE-AQ求出QE的长度,然后过点E作EP⊥BC于点P,则EP为点E到直线BC的距离,进而在Rt△QPE中求出PE的值在于7进行比较即可得到答案. 【解析】 (I)如图,AB=40,AC=10,. 由于0°<θ<90°,所以cosθ=. 由余弦定理得BC=. 所以船的行驶速度为(海里/小时). (II)如图所示,设直线AE与BC的延长线相交于点Q. 在△ABC中,由余弦定理得, ==. 从而. 在△ABQ中,由正弦定理得, AQ=. 由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15. 过点E作EP⊥BC于点P,则EP为点E到直线BC的距离. 在Rt△QPE中,PE=QE•sin∠PQE=QE•sin∠AQC=QE•sin(45°-∠ABC) =. 所以船会进入警戒水域.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(a,b为常数),
(1)若b=1,解不等式f(x-1)>0;
(2)当x∈[-1,2]时,f(x)的值域为manfen5.com 满分网,求a,b的值.
查看答案
已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N*),
(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列.
(2)设f(x)的图象的顶点到x轴的距离构成{bn},求{bn}的前n项和.
查看答案
在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=manfen5.com 满分网,sinB=manfen5.com 满分网
(1)求A+B的值;
(2)若a-b=manfen5.com 满分网-1,求a、b、c的值.
查看答案
已知在锐角△ABC中,角A,B,C,的对边分别为a,b,c,且manfen5.com 满分网
(1)求∠B;(2)求函数manfen5.com 满分网的最小值及单调递减区间.
查看答案
定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.