满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.
(1)由函数f(x)在[1,2]上是减函数得在[1,2]上恒成立,即有h(x)=2x2+ax-1≤0成立求解. (2)先假设存在实数a,求导得=,a在系数位置对它进行讨论,结合x∈(0,e]分当a≤0时,当时,当时三种情况进行. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1, 有 得, 得(6分) (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,=(7分) 当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), ∴g(x)无最小值. 当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件.(11分) 当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), ∴f(x)无最小值.(13分) 综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.(14分)
复制答案
考点分析:
相关试题推荐
对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x,则称点(x,f(x) )为函数y=f(x)的“拐点”;定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)恒成立,则函数y=f(x)的图象关于点(x,f(x))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).
查看答案
已知函数f(x)=2manfen5.com 满分网-lnx-2.
(I)求f(x)的单调区间;
(II)若不等式manfen5.com 满分网manfen5.com 满分网恒成立,求实数m的取值组成的集合.
查看答案
已知函数f(x)=xln(1+x)-a(x+1),其中a为实常数.
(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;
(2)求函数manfen5.com 满分网的单调区间.
查看答案
设a>0,函数 f(x)=manfen5.com 满分网
(Ⅰ)求函数 f(x) 的单调区间;
(Ⅱ)当 x=manfen5.com 满分网时,函数f(x) 取得极值,证明:对于任意的 x1,x2∈[manfen5.com 满分网manfen5.com 满分网];|f(x1)-f(x2)|≤manfen5.com 满分网manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网,(其中实数y和x不同时为零),当|x|<2时,有manfen5.com 满分网,当|x|≥2时,manfen5.com 满分网
(1)求函数式y=f(x);
(2)求函数f(x)的单调递减区间;
(3)若对∀x∈(-∞,-2]∪[2,+∞),都有mx2+x-3m≥0,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.