因“至少有一个不小于”的反面情况较简单,比较方便证明,故从反面进行证明,用反证法.先根据函数f(x)的解析式,分别将x=1,2,3代入求得f(1),f(3),f(2),进而求得f(1)+f(3)-2f(2).再假设|f(1)|,|f(2)|,|f(3)|都小于 ,推出-2<f(1)+f(3)-2f(2)<2,利用此式与上面求得的式子矛盾,从而得出证明.
证明:∵f(x)=x2+px+q
∴f(1)=1+p+qf(2)=4+2p+qf(3)=9+3p+q
所以f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.
假设|f(1)|,|f(2)|,|f(3)|都小于 ,
则 ,
即有
∴-2<f(1)+f(3)-2f(2)<2
由贞面可知f(1)+f(3)-2f(2)=2,
与-2<f(1)+f(3)-2f(2)<2矛盾,
∴假设不成立,即原命题成立.