我们画出A(5,2)、B(1,1)、,所确定的平面区域△ABC,将目标函数z=ax+y化成斜截式方程后得:y=-ax+z,由于Z的符号为正,所以目标函数值Z是直线族y=-ax+z的截距,当直线族y=-ax+z的斜率与直线AC的斜率相等时,目标函数z=ax+y取得最大值的最优解有无数多个,由此不难得到a的值.
【解析】
∵目标函数z=ax+y
∴y=-ax+z
故目标函数值Z是直线族y=-ax+z的截距
当直线族y=-ax+z的斜率与直线AC的斜率相等时,
目标函数z=ax+y取得最大值的最优解有无数多个
此时,-a==-
即a=
故答案为: