满分5 > 高中数学试题 >

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,...

manfen5.com 满分网已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,D、E、F分别为B1A、C1C、BC的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求三棱锥E-AB1F的体积.
(1)证法1:根据直线与平面平行的判定定理可知,只要在平面ABC里面找到一条直线与DE平行即可,过DE构造平行四边形,使其与平面ABC相交,则可得DE与交线平行,所以进一步可得DE∥平面ABC; 证法2:根据直线与平面平行的判定定理可知,只要在平面ABC里面找到一条直线与DE平行即可,因为D、E均为中点,所以构造平行线的时候可以考虑一下构造“中位线”. (2)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.有时候题目中没有现成的直线与直线垂直,需要我们先通过直线与平面垂直去转化一下,如欲证B1F⊥AF,可以先证明AF⊥平面B1BCC1;利用勾股定理,易证明B1F⊥FE (3)本题的后两问是递进式的,第(2)问是为第(3)问作铺垫的.解决三棱锥求体积的问题,关键在于找到合适的高与对应的底面,切忌不审图形,盲目求解.由第(2)问易知,可将B1F看成是高,Rt△AEF作为底面 【解析】 (I)方法1:设G是AB的中点,连接DG,则DG平行且等于EC,(2分) 所以四边形DECG是平行四边形,所以DE∥GC, 从而DE∥平面ABC.(4分) 方法2:连接A1B、A1E,并延长A1E交AC的延长线于点P,连接BP. 由E为C1C的中点,A1C1∥CP,可证A1E=EP,(2分) ∵D、E是A1B、A1P的中点,∴DE∥BP, 又∵BP⊂平面ABC,DE⊄平面ABC,∴DE∥平面ABC(4分) (II)∵△ABC为等腰直角三角形,F为BC的中点,∴BC⊥AF, 又∵B1B⊥平面ABC,可证B1F⊥AF,(6分) ∵AB=AA1=2,∴, ∴B1F2+EF2=B1E2,∴B1F⊥FE, ∵AF∩FE=F,∴B1F⊥平面AEF(8分) (III),(10分) (12分)
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别是角A、B、C所对的边,且b2=ac,向量m=(cos(A-C),1)和n=(1,cosB)满足manfen5.com 满分网
(1)求sinAsinC的值;
(2)求证:三角形ABC为等边三角形.
查看答案
已知:M={a|函数y=2sinax在[manfen5.com 满分网]上是增函数},N={b|方程3-|x-1|-b+1=0有实数解},设D=M∩N,且定义在R上的奇函数manfen5.com 满分网在D内没有最小值,则m的取值范围是    查看答案
已知定义在R上的函数f(x)满足f(2)=3,f′(x)-1<0,则不等式f(x2)<x2+1的解集为    查看答案
已知向量manfen5.com 满分网=(2,1),manfen5.com 满分网=(1,7),manfen5.com 满分网=(5,1),设X是直线OP上的一点(O为坐标原点),那么manfen5.com 满分网的最小值是     查看答案
椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,P为椭圆M上任一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中manfen5.com 满分网,则椭圆m的离心率e的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.