(1)欲证平面ACD⊥平面ADE,根据面面垂直的判定定理可知在平面ADE内一直线与平面ACD垂直,而根据BC⊥平面ADC,DE∥BC,可得DE⊥平面ADC;
(2)所求简单组合体的体积进行分【解析】
V=VE-ABC+VE-ADC,然后利用体积公式进行求解,关键是几何体的高的求解.
【解析】
(1)证明:∵DC⊥平面ABC,BC⊂平面ABC,
∴DC⊥BC,
∵AB是圆O的直径,
∴BC⊥AC且DC∩AC=C,
∴BC⊥平面ADC,
∵四边形DCBE为平行四边形,
∴DE∥BC,
∴DE⊥平面ADC,
又∵DE⊂平面ADE,
∴平面ACD⊥平面ADE;
(2)所求简单组合体的体积:V=VE-ABC+VE-ADC
∵AB=2,BC=1,,
∴,,
∴
∴该简单几何体的体积V=1;