(1)M、N、P、Q是相应边的中点,由中位线定理易得MN∥AC,MN=AC.PQ∥CA,PQ=CA,从而知MNPQ是平行四边形,对角线互相平分;
(2)由(1)知AC∥MN.由线面平行的判定定理易证AC∥平面MNP,同理BD∥NP,由线面平行的判定定理易证BD∥平面MNP.
【解析】
证明:(1)∵M、N是AB、BC的中点,∴MN∥AC,MN=AC.
∵P、Q是CD、DA的中点,∴PQ∥CA,PQ=CA.
∴MN∥QP,MN=QP,MNPQ是平行四边形.
∴□MNPQ的对角线MP、NQ相交且互相平分.
(2)由(1),AC∥MN.记平面MNP(即平面MNPQ)为α.显然AC⊄α.
否则,若AC⊂α,
由A∈α,M∈α,得B∈α;
由A∈α,Q∈α,得D∈α,则A、B、C、D∈α,
与已知四边形ABCD是空间四边形矛盾.
又∵MNÌα,∴AC∥α,
又ACËα,∴AC∥α,即AC∥平面MNP.
又∵BD∥NP,BD⊄平面MNP,NP⊂平面MNP
∴BD∥平面MNP.