先根据抛物线的方程求出焦点坐标即为圆心坐标,然后分两种情况:斜率不存在,显然得到直线l;斜率存在时,设出斜率k,因为直线l与圆相切,利用圆心到直线的距离等于半径列出关于k的方程,求出k的值即可得到直线l的方程.
【解析】
若直线l的斜率不存在,根据题意显然x=-1满足条件,所以直线l的方程为x=-1;
若直线l的斜率存在,设斜率为k,则直线l的方程为y-3=k(x+1),
根据抛物线的解析式得到焦点法横坐标为x===1,
则焦点坐标即为圆心坐标为(1,0),
因为直线l与圆相切,所以圆心到直线的距离d==r=2,解得k=-,
则直线l的方程为y-3=-(x+1),化简得5x+12y-31=0.
所以直线l的方程是x=-1或5x+12y-31=0.
故答案为:x=-1或5x+12y-31=0