满分5 > 高中数学试题 >

如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的...

manfen5.com 满分网如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
(1)由AD∥BC和AD⊥平面ABE证明AE⊥BC,再由BF⊥平面ACE得AE⊥BF,根据线面垂直的判定定理证出AE⊥平面BCE,即证出AE⊥BE; (2)由题意知AD⊥平面ABE,则过E点作EH⊥AB,得到EH⊥平面ABCD,再根据条件求出EH和AB,利用换低求出三棱锥的体积; (3)根据条件分别在△ABE中过M点作MG∥AE和△BEC中过G点作GN∥BC,根据线面平行的判定证出MG∥平面ADE和GN∥平面ADE,由面面平行的判定证出平面MGN∥平面ADE,则得到N点在线段CE上的位置. 【解析】 (1)证明:∵AD⊥平面ABE,AD∥BC ∴BC⊥平面ABE,则AE⊥BC 又∵BF⊥平面ACE,∴AE⊥BF ∵BC∩BF=B, ∴AE⊥平面BCE,且BE⊂平面BCE,∴AE⊥BE (2)过E点作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH, ∴EH⊥平面ABCD, ∵AE=EB=2,∴AB=2,EH=, ∴×× (3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN, ∵AM=2MB,∴CN= ∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE 同理可证,GN∥平面ADE, ∵MG∩GN=G,∴平面MGN∥平面ADE 又∵MN⊂平面MGN,∴MN∥平面ADE, ∴N点为线段CE上靠近C点的一个三等分点
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-2x2+bx+c在x=1时有最大值1,
(1)求f(x)的解析式;
(2)若0<m<n,且x∈[m,n]时,f(x)的值域为manfen5.com 满分网.试求m,n的值.
查看答案
设正项等比数列{an}的首项manfen5.com 满分网,前n项和为Sn,且210S30-(210+1)S20+S10=0.
(Ⅰ)求{an}的通项;
(Ⅱ)求{nSn}的前n项和Tn
查看答案
已知函数y=f(x)是R上的奇函数,当x≤0时,manfen5.com 满分网
(1)判断并证明y=f(x)在(-∞,0)上的单调性;
(2)求y=f(x)的值域.
查看答案
将n2个数排成n行n列的一个数阵:
a11a12a13…a1n
a21a22a23…a2n
a31a32a33…a3n

an1an2an3…ann
已知a11=2,a13=a61+1,该数阵第一列的n个数从上到下构成以m为公差的等差数列,每一行的n个数从左到右构成以m为公比的等比数列,其中m为正实数.
(1)求第i行第j列的数aij
(2)求这n2个数的和.
查看答案
设函数manfen5.com 满分网,其中|t|≤1,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间(-1,1)内的单调性并求极值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.