登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
关于x的方程(x2-1)2-|x2-1|+k=0有5个不同的实根,则实数k= ....
关于x的方程(x
2
-1)
2
-|x
2
-1|+k=0有5个不同的实根,则实数k=
.
讨论x2-1的正负,画出高次函数的图象,观察即可得出答案. 【解析】 当x2-1≥0时原方程为 (x2-1)(x2-2)=-k (x-1)(x+1)(x+)(x-)=-k 当x<0时原方程为 (x2-1)x2=-k (x+1)(x-1)x2=-k 两种情况联立图象为 由此可知只有当k=0时,方程才可能有五个不同实根. 故答案为0.
复制答案
考点分析:
相关试题推荐
设函数y=f(x)的反函数为y=f
-1
(x),且y=f(2x-1)的图象过点
,则y=f
-1
(x)的图象过点
.
查看答案
在
内方程cos(πcosx)=0的所有解的和为
.
查看答案
的值域为
.
查看答案
已知f(x)是R上的奇函数,且当x∈(0,+∞)时,
,则f(x)的解析式为
.
查看答案
数列{a
n
}为等差数列,a
3
a
7
=-16,a
4
+a
6
=0,则{a
n
}的通项公式为
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.