登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
y=f(x)在R上有定义,对于给定的正数k,定义取f(x)=2-|x|,当时,f...
y=f(x)在R上有定义,对于给定的正数k,定义
取f(x)=2
-|x|
,当
时,f
k
(x)的单调递增区间为
.
由题意,表示f(x)和k中的较小值,而,故可分x≤-1,-1<x<1和x≥1三段进行讨论;或者作出f(x)=2-|x|的图象,与比较大小,从而确定fk(x)的图象,由图象确定单调递增区间. 【解析】 f(x)=2-|x|的图象和的图象如右图所示: 表示f(x)和k中的较小值, 故 故fk(x)的单调递增区间为(-∞,-1] 故答案为:(-∞,-1]
复制答案
考点分析:
相关试题推荐
若不等式
对于任意正整数n恒成立,则实数a的取值范围为
.
查看答案
已知函数
,直线x=t(t∈R)与函数f(x),g(x)的图象分别交于M,N两点,则|MN|在
时的最大值为
.
查看答案
关于x的方程(x
2
-1)
2
-|x
2
-1|+k=0有5个不同的实根,则实数k=
.
查看答案
设函数y=f(x)的反函数为y=f
-1
(x),且y=f(2x-1)的图象过点
,则y=f
-1
(x)的图象过点
.
查看答案
在
内方程cos(πcosx)=0的所有解的和为
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.