满分5 > 高中数学试题 >

如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的...

manfen5.com 满分网如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
(1)由AD∥BC和AD⊥平面ABE证明AE⊥BC,再由BF⊥平面ACE得AE⊥BF,根据线面垂直的判定定理证出AE⊥平面BCE,即证出AE⊥BE; (2)由题意知AD⊥平面ABE,则过E点作EH⊥AB,得到EH⊥平面ABCD,再根据条件求出EH和AB,利用换低求出三棱锥的体积; (3)根据条件分别在△ABE中过M点作MG∥AE和△BEC中过G点作GN∥BC,根据线面平行的判定证出MG∥平面ADE和GN∥平面ADE,由面面平行的判定证出平面MGN∥平面ADE,则得到N点在线段CE上的位置. 【解析】 (1)证明:∵AD⊥平面ABE,AD∥BC ∴BC⊥平面ABE,则AE⊥BC 又∵BF⊥平面ACE,∴AE⊥BF ∵BC∩BF=B, ∴AE⊥平面BCE,且BE⊂平面BCE,∴AE⊥BE (2)过E点作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH, ∴EH⊥平面ABCD, ∵AE=EB=2,∴AB=2,EH=, ∴×× (3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN, ∵AM=2MB,∴CN= ∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE 同理可证,GN∥平面ADE, ∵MG∩GN=G,∴平面MGN∥平面ADE 又∵MN⊂平面MGN,∴MN∥平面ADE, ∴N点为线段CE上靠近C点的一个三等分点
复制答案
考点分析:
相关试题推荐
设正项等比数列{an}的首项manfen5.com 满分网,前n项和为Sn,且210S30-(210+1)S20+S10=0.
(Ⅰ)求{an}的通项;
(Ⅱ)求{nSn}的前n项和Tn
查看答案
已知函数y=f(x)是R上的奇函数,当x≤0时,manfen5.com 满分网
(1)判断并证明y=f(x)在(-∞,0)上的单调性;
(2)求y=f(x)的值域.
查看答案
若椭圆manfen5.com 满分网过点(-3,2)离心率为manfen5.com 满分网,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求manfen5.com 满分网的最大值与最小值.
查看答案
设函数f(x)=(x+1)2-2klnx.
(1)当k=2时,求函数f(x)的增区间;
(2)当k<0时,求函数g(x)=f′(x)在区间(0,2]上的最小值.
查看答案
manfen5.com 满分网已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且manfen5.com 满分网=λ(0<λ<1).
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.