(1)由a1+3a2+32a3+…+3n-1an=⇒当n≥2时,a1+3a2+32a3+…+3n-2an-1=,两式作差求出数列{an}的通项.
(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.
【解析】
(1)∵a1+3a2+32a3+…+3n-1an=,①
∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=.②
①-②,得3n-1an=,(n≥2),
在①中,令n=1,
得.∴.
(2)∵,
∴bn=n•3n.
∴Sn=3+2×32+3×33+…+n•3n.③
∴3Sn=32+2×33+3×34+…+n•3n+1.④
④-③,得2Sn=n•3n+1-(3+32+33+…+3n),
即2Sn=n•3n+1-.
∴.