满分5 > 高中数学试题 >

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函...

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是manfen5.com 满分网,则切点的横坐标为( )
A.ln2
B.-ln2
C.manfen5.com 满分网
D.manfen5.com 满分网
已知切线的斜率,要求切点的横坐标必须先求出切线的方程, 我们可从奇函数入手求出切线的方程. 【解析】 对f(x)=ex+a•e-x求导得 f′(x)=ex-ae-x 又f′(x)是奇函数,故 f′(0)=1-a=0 解得a=1,故有 f′(x)=ex-e-x, 设切点为(x,y),则 , 得或(舍去), 得x=ln2.
复制答案
考点分析:
相关试题推荐
已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<manfen5.com 满分网,则( )
manfen5.com 满分网
A.A=4
B.ω=1
C.manfen5.com 满分网
D.B=4
查看答案
若集合M={x|x2-x≤0},函数f(x)=log2(1-|x|)的定义域为N,则M∩N=( )
A.[0,1)
B.(0,1)
C.[0,1]
D.(-1,0]
查看答案
若复数manfen5.com 满分网(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( )
A.-2
B.4
C.-6
D.6
查看答案
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
定义在R上的函数f (x)满足:如果对任意x1,x2∈R,都有manfen5.com 满分网,则称函数f (x)是R上的凹函数,已知二次函数f(x)=ax2+x(a∈R,a≠0),
(1)当a=1时,试判断函数f (x)是否为凹函数,并说明理由;
(2)如果函数f (x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.